Conservative Bayesian Model-Based Value Expansion for Offline Policy Optimization (to appear at ICLR-23)

PGM description of CBOP

Offline reinforcement learning (RL) addresses the problem of learning a performant policy from a fixed batch of data collected by following some behavior policy. Model-based approaches are particularly appealing in the offline setting since they can extract more learning signals from the logged dataset by learning a model of the environment. However, the performance of existing model-based approaches falls short of model-free counterparts, due to the compounding of estimation errors in the learned model. Driven by this observation, we argue that it is critical for a model-based method to understand when to trust the model and when to rely on model-free estimates, and how to act conservatively w.r.t. both. To this end, we derive an elegant and simple methodology called conservative Bayesian model-based value expansion for offline policy optimization (CBOP), that trades off model-free and model-based estimates during the policy evaluation step according to their epistemic uncertainties, and facilitates conservatism by taking a lower bound on the Bayesian posterior value estimate. On the standard D4RL continuous control tasks, we find that our method significantly outperforms previous model-based approaches: e.g., MOPO by 116.4%, MOReL by 23.2% and COMBO by 23.7%. Further, CBOP achieves state-of-the-art performance on 11 out of 18 benchmark datasets while doing on par on the remaining datasets.

Jihwan Jeong
Jihwan Jeong
Ph.D. Candidate at University of Toronto

My research interests include offline reinforcement learning, model-based reinforcement learning, decision-aware model learning, meta-learning and Bayesian deep learning.